

Neutrino Factory and Muon Collider R&D

Alan Bross
Accelerator Physics Center
FRA Visiting Committee
April 26, 2008

Neutrino Factory and Muon Collider R&D Organization

- R&D Program carried out by two groups
 - > Neutrino Factory and Muon Collider Collaboration
 - > Fermilab Muon Collider Task Force

MUON COLLIDER R&D CO-ORD COMMITTEE

NEUTRINO

PROGRAM

FACTORY

R&D

MUON

R&D

COLLIDER

PROGRAM

NF & MC Although Very Different - Front End Can be the Same

Neutrino Factory

- > IDS Basline (FS1, FS2(a)(b), ISS)
 - 25 GeV μ storage ring
 - · 4 GeV Option under study

■ MC: One Concept

- > 4 TeV Center-of-Mass
 - Rapid-Cycling Synchrotron Acceleration

SMALL FOOTPRINT

NF Motivation - Physics Reach (ISS)

The NF gives the best Physics Reach

> NF = PRECISION

SPL: 4MW, 1MT H₂OC, 130 km BL T2HK: 4 MW, 1MT H₂OC, 295 km BL WBB: 2MW, 1MT H₂OC, 1300 km BL

NF: 4MW, 100KT MIND, 4000 & 7500 BL BB350: γ=350, 1MT H₂OC, 730 km BL

Muon Collider - Motivation

Reach Multi-TeV Lepton-Lepton Collisions at High Luminosity

Muon Colliders may have special role for precision measurements.

Small ∆E beam spread
Precise energy scans

Small Footprint - Could Fit on Existing Laboratory Site

Muon Collider at the Energy Frontier

Comparisons with Energy Frontier ete-Collider

- For many processes Similar cross sections
- Advantage in s-channel scalar production
 - Cross section enhancement of (m_µ/m_e)²
 - $\approx 40,000$
- More precise energy scan capability
 - Beam energy spread and Beamstrahlhung limits precision of energy frontier (3TeV) e⁺e⁻ machines
- Muon Decay backgrounds in MC do have Detector implications, however
- Started MC Physics and Detector Study Group
 - > E. Eichten & C. Hill (Theory)
 - > M. Demarteau (Detector)

The Future - The Planets Will Be In Alignment?

- We believe ~2012 will be a pivotal time in HEP
 - > LHC Physics Results
 - Neutrino Data from Reactor and Accelerator Experiments
 - Double Chooz Daya Bay
 - MINOS, T2K, Nova
 - > Major Studies for Frontier Lepton-Colliders Completed
 - · ILC EDR
 - · CLIC CDR
- Many exciting results Will point us in Some Direction
 - > We Don't Know Which One Yet

Aspirational Goals for 2012

- >Simulation Effort
- > Component Development
- Experimental Studies
 Aimed at Delivering
- Completed IDS-NF Study
 - >RDR
- Completed MC Feasibility Study
 - >ZDR

Needs Common to NF and MC Facility

- Proton Driver
 - > Project X
- Target, Capture, and Decay
 - \triangleright create π 's; decay into μ 's
- Phase Rotation
 - > reduce ΔE of bunch
- Cooling
 - > reduce emittance of the muons
 - Cost-effective for NF
 - Essential for MC
- Acceleration
 - > Accelerate the Muons
- Storage Ring
 - > store for ~1000 turns

80% Overlap in initial R&D

But there are Key Differences

Neutrino Factory

Cooling

- Reduce transverse emittance
 - $\cdot \epsilon_{\perp} \sim 7 \text{ mm}$
- . Acceleration
 - Accelerate to 25 GeV
 - May be as low as 5-7 GeV
- . Storage Ring
 - No intersecting beams

Muon Collider

- . Cooling
 - Reduce 6D emittance
 - . ε_⊥ ~ 3-25 μm
 - \cdot ϵ_{l} ~ 70 mm
- . Acceleration
 - Accelerate to 1-2
 TeV
- . Storage Ring
 - Intersecting beams

R&D Program

Focusing on Fermilab Activities

Muon Cooling: MuCool and MICE Component R&D and Cooling Experiment

MuCool

- > Component testing: RF, Absorbers, Solenoids
 - With High-Intensity Proton Beam
- Uses Facility @Fermilab (MuCool Test Area -MTA)
- Supports Muon Ionization Cooling Experiment (MICE)
- > 10 institutions from the US, UK and Japan participate

MuCool Test Area

MuCool 201 MHz RF Testina

50 cm Ø Be RF window

MuCool LH2 Absorber Body

Fundamental Focus Of RF R&D

- Study the limits on Accelerating Gradient in NCRF cavities in magnetic field
- It has been proposed that the behavior of RF systems in general can be accurately described (predicted) by universal curves
 - > Electric Tensile Stresses are important in RF Breakdown events
- This applies to all accelerating structures
- Fundamental Importance to both NF and MC
 - > Muon capture, bunching, phase rotation
 - > Muon Cooling
 - > Acceleration

The Basic Problem - B Field Effect 805 MHz Studies

- Data seem to follow universal curve
 - Max stable gradient degrades quickly with B field
- Remeasured
 - Superconducting Coils

 LBL Pillbox Cavity

 0.2 m

805 MHz Imaging

Polaroid Pictures of Field emitters

· Inserting polaroids near the window,

 Gives a picture of how the field emitters change with rf field.

8.8 - 17.6 MV/m

Cavity material ("Button") test

- "Button" system in pillbox cavity designed for easy replacement of test materials
- Tested so far: TiN-coated Cu & Mo, bare Mo and W
- To be tested: Cu (electro-polished & unpolished), Be
- Results to date indicate that TiN can improve performance at a given B field by somewhat more than 50%
 - > 16.5MV/m \rightarrow 26MV/m

Be

RF R&D - 201 MHz Cavity Test

- The 201 MHz Cavity 19 MV/m Gradient Achieved (Design 16MV/m)
 - > At 0.75T reached 14MV/m (multipactoring observed)

High Pressure H₂ Filled Cavity Work - Muon's Inc

- High Pressure Test Cell
- Study breakdown properties of materials in H₂ gas
- Operation in B field
 - \triangleright No degradation in M.S.O.G. up to \approx 3.5T
- Next Test Repeat with beam

Muon Ionization Cooling Experiment (MICE)

Muon Ionization Cooling Experiment

Muon Ionization Cooling Experiment (MICE)

MICE

Measurement of Muon Cooling - Emittance Measurement @ 10⁻³

Aspirational MICE Schedule as of April 2008

MICE Milestone

First Beam Measured in MICE Beam Line View Through Two of the Quads in the MICE Beam Line

Progress on MICE

- Beam Line Complete
 - First Beam March 30th!
 - Beam Monitors (FNAL)
- First Spectrometer Summer

Fermilab Responsibilities in MICE

Beam Line

> Beam Line monitors (scintillating fiber detectors)

Spectrometers

- > Fiber ribbons for Fiber Tracker
- > Fiber Readout
 - VLPC and cryogenics
 - Analog Front-end Board
- > Field mapping of Spectrometer magnets
 - Using upgraded ZipTrack System

Absorbers

- > Supported testing of prototype (KEK design) LH2 @MTA
- Provide LiH disks for step III.1

MERIT-Mercury Intense Target

- Test of Hg-Jet target in magnetic field (15T)
- Located in TT2A tunnel to ISR, in nTOF beam line
- Beam run was in October, 2007
 - \succ Test the principle of 50 Hz operation at 24 GeV \Rightarrow 4 MW

The MERIT Experiment Results

- The Neutrino Factory/Muon Collider target concept has been validated for 4MW 50Hz operations.
 - >Tremendous work by the MERIT Team
- Data Analysis continues
 - >APC Energy Deposition Group
 - Particle production/flux simulations and compare to data

Helical Cooling Channel - Muons Inc

- Magnetic field is solenoid BO+ dipole + quad
- System is filled with H2 gas, includes rf cavities
- Cools 6-D (large E means longer path length)
- But, incorporating RF is Engineering challenge!

HCC Magnet design - Fermilab TD

- Helical solenoid (HS):
 Smaller coils than in a "snake" design
 - Smaller peak field
 - > Lower cost
- Field components in HS determined by geometry
 - Over constrained
 - Coil radius is not free parameter
- 4 Coil Demonstration Model
 - Validate mechanical structure and fabrication methods
 - Study quench performance and margins, field quality, quench protection
 - Use SSC conductor

4-coil fabrication status

Parts:

- design complete
- procurement in progress

Cable:

 Extracted strand samples were tested

Practice winding complete:

- cable stability and support during hard bend winding
- coil size control

Instrumentation:

development started

Model test:

September 2008

MCTF Conductor Program: Extreme-High-Field Magnets

- Several schemes for the final stage(s) of muon cooling for the MC require 30-50T solenoids ⇒ High Temperature Superconductor R&D
- We are working to form a National HTS R&D Program
 - Address very-high magnet R&D in general
- Emphasis on HTS strands, tapes and cables
 - > Nb3Sn and Nb3Al strand and cable R&D is supported by other programs (DOE, LARP, NIMS/FNAL/KEK, CARE, etc.)
- Fermilab R&D infrastructure
 - Two Oxford Instrument Teslatron stations with 16T and 17T solenoids, and test temperatures from 1.9K to 70K
 - > 42-strand cabling machine
 - > Probes to measure
 - I_c of HTS strands and tapes as a function of field, temperature, and field orientation
 - Transverse pressure sensitivity of strand I_c in a cable
 - > 28 kA SC transformer to test cables at self-field in LHe

Very-Large Magnets: NF Detector R&D The Magnetic Cavern

- Based on Superconducting Transmission Line (SCTL) for VLHC (Fermilab)
- Features
 - > 25 X 10³ m³
 - > 10 solenoids
 - > 15-m long 15 m ID each
 - → B_{nom} ~0.5 T (@50% critical current)
 - > 1 m iron wall, B~2.4 T
 - > Good field uniformity
- Re-engineer SCTL for tighter bend radius
 - > 7.5m vs. 37km
- 2-3 Turn full-scale prototype tests
 - > Verify forces, etc

MuCool Phase II

MuCool Phase II

- Commission Linac
 Beam Line to MTA
- Reconfigure Equipment
- First Beam
 Experiment (Muon's
 Inc HP RF Test Cell)
 by end of 2008
- Tests of 201 MHz cavity in full field
 - > New SC coil
 - MICE CC prototype

MTA Beam Status/Commissioning

- Beam Line Installation Complete
- Beam Line commissioning to first beam stop (Linac side of shield wall) may start as early as June
- Still doing radiation shielding assessments
 - Rerouting RF Power required
 - Final configuration for this still being developed
- Will start at low intensity
 - Need Shielding upgrade (over-burden) for highintensity
 - Full pulse intensity, limited #pulses/min

First Beam Experiment in MTA

Test of Muons Inc High Pressure H₂ 805 MHz test cell

- Beam tests will be done in collaboration with Muons Inc
- First test will use the existing Muons Inc test cell
 - Will indicate direction of follow-ups experiments
- Linac 400MeV proton beam can generate ionization levels similar to muon beam.
 - About 50% of protons make it into cavity, at ~100MeV/c
 - > Each proton ~5 MIPs
 - ➢ 6e12 protons ~1.2e13 muons
- If successful, next step is to build realistic 805 MHz test cavity

bean

The Way Forward?

Muon Complex Vision

Road to a Neutrino Factory

The ISS

- Made the case for the high-sensitivity programme of neutrino-oscillation measurement
 - Unprecedented physics reach and precision
- Developed an internationally agreed baseline for the Neutrino Factory accelerator complex
- Developed an internationally agreed baseline for the Neutrino Factory neutrino-detection systems
- Demonstrated the need to evaluate the performance of cost of the various facilities, and the Neutrino Factory in particular, on the timescale of 2012 (RDR)

This is the launch point for the IDS-NF

Physics performance of the Neutrino Factory is detailed and the specification of each of the accelerator, diagnostic, and detector systems that make up the facility is defined leading to a RDR

Road to the Muon Collider

- The MC could be the most cost-effective route to the Energy Frontier for a Lepton-Lepton Collider
 - > The facility has tremendous physics potential
- MC ZDR by ≈ 2012 Ingredients
 - > End-to-End MC design
 - Technology Choice
 - > MICE experiment (successful) results
 - > Key RF questions answered
 - Technology Choice
 - > Prospects of HTS magnets understood
 - Technology Opportunity
 - Muon acceleration techniques explored

There is an Evolutionary Path

Muon Complex Evolution

Timeline and Funding Request: IDS RDR & MCFS

Muon Accelerator Research Program Organization

Conclusions

- Although this has been a stressful year due to funding limitations, much progress has been made
 - > MuCool 19MV/m @ 201MHz
 - > MERIT 4MW Targetry demonstration
 - > MICE First beam
 - Much progress on the design and simulation for a Helical Cooling channel
 - Beginnings of a National program (&collaboration) on High Temperature Superconductor and its application in extreme-high-field magnets
 - On track for the first beam experiment in the MTA by year's end
 - > IDS-NF has been launched
 - Developing the plan on how to deliver a feasibility study (ZDR) for a Muon Collider by around 2012

